The Nanocapsules developed by Technion researchers from natural materials can also be used by the pharmaceutical industry – in the protection of medicines in the stomach and their release in the intestine, as well as for targeting cancerous tumors

Technion researchers have created nanocapsules that are based on natural food components, and trapped in them vitamins and nutraceuticals (health-enhancing micronutrients) that do not dissolve well in water. The nanocapsules can be added to clear beverages, thus increasing their health benefits without clouding them.

Dr. Yoav Livney and his team in the Faculty of Biotechnology and Food Engineering used the Maillard reaction to create nanocapsules based on the protein–polysaccharide conjugates. This natural reaction, which is the cause of the browning of food during baking and cooking, was used in the past in the creation of emulsions and microcapsules for nutrients that do not dissolve in water, but the problem with the existing methods is that the capsules obtained were large, so that they clouded the liquid they were added to.

To overcome this problem, Dr. Livney and his team conjugated maltodextrin, a product of the breakdown of starch into Casein, milk protein, in a controlled process. The conjugated molecules (conjugates) underwent spontaneous self-assembly into capsules of nanometric dimensions. These nanocapsules are so small, that the beverages they were added to remained clear.

In the next stage, the researchers trapped in the nanocapsules vitamin D (large parts of the population suffer from vitamin D deficiency, which could cause rickets in children and many other health disorders in adults). The research team found that the nanocapsules protect the vitamins “packed” in them. “They protected the vitamin D from degrading in an acidic environment, and during its refrigerated shelf-life”, says Dr. Livney.

Another important material called EGCG (epigallocatechin gallate), that is found in green tea and that is considered to inhibit many diseases, among them are neurodegenerative diseases, cardiovascular diseases and cancer, was also significantly protected by the conjugates throughout its shelf-life.

The researchers also followed the release of the nutrients from the nanocapsules under simulated digestion conditions. They discovered that the nanocapsules succeeded in keeping the nutrients trapped in them, and in protecting them under stomach conditions. Livney believes that the enzymes in the small intestine will break the polysaccharide-protein envelope down easily, allowing the absorption of the nutritional nano-cargo at the desired location, in the small intestine.

In the future, Dr. Livney plans to “research the overall release profile of nutraceuticals through simulated digestion, and later to examine their bioavailability in vivo in clinical trials”. He adds that “we also intend to investigate the encapsulation by this method of other bio-active components, such as anti-cancer medicines.

Another team headed by Dr. Livney is currently developing the next generation of polysaccharide-protein conjugate-based nanocapsules, which are aimed at target-oriented delivery of medicines in the body, marking the location of cancerous tumors and destroying them.

Prior to becoming a faculty member in the Technion’s Faculty of Biotechnology and Food Engineering, Yoav Livney was involved in the development of “Gamadim”, “Ski” and “Symphony”, as part of his work as the product development manager of the cheese business unit at “Strauss”.