TechnoBrain 2019, Technion’s annual scientific challenge competition encourages students to step ‘out of the box’ and embrace scientific challenges in a creative way.

Neev-Ya Durban, after whom the competition is named, would have been proud to see these amazing, self-driven student teams. Neev-Ya, a former student at Technion’s Faculty of Aerospace Engineering, sought to challenge Technion students by posing creative engineering tasks. “We need to take them away from their textbooks and give them a way to express themselves creatively,” he had said.

This year’s challenge was based on the slinky, a popular, patented helical spring toy invented by engineer Richard James and his wife Betty in the 1940s, which can perform a number of tricks, including travelling down a flight of stairs, end-over-end, as it stretches and re-forms itself with the aid of gravity and its own momentum.

Before the competition, the teams put their innovative structures to the test, measuring the vertical alignments of the 18 stairs to see how their structures met the preset speed and water overflow criterion. Most of the designs were based on simple slide devices while some also employed a pendulum designed to harness the flow of water out of the container.

“I didn’t sleep for a week but it was well worth the challenge,” said Ori Nissim of Technion’s Faculty of Civil and Environmental Engineering. Together with his team-mate, Ori Michael of the Faculty of Mechanical Engineering and the Faculty of Computer Science, the two (Oris) won first place at the TechnoBrain event. “The whole idea of TechnoBrain is to step away from our strenuous learning and courses and to implement what we learn into a creative project,” agreed the two winners.

Simplicity is the key. The winners said that at first, their ideas were far-fetched. “We even considered using centrifugation to limit the amount of water flow out of the container but eventually understood that a pair of rubber bands would do the trick just as well”. Complete with a coarse board to increase friction and a mast, serving as the braking mechanism, the two were ready to go. “At the last minute we decided to add wheels to the front of the board to assist the structure at the final step of its descent,” the two recalled.

The winners with their competitive invention

In at second came (Yerida Lezoreh Yerida) Dovi Kogan, Shahar Zur and Shahar Tsadok. This talented trio of Technion’s Faculty of Mechanical Engineering, built a sled-like structure with unique wooden wheels, resembling actual stairs in their structure, to enable wide-scale friction upon contact with the ground.  

Third place went to (Stairship) Sam Mendes, Sher Hazan and Avihay Lael also of Technion’s Faculty of Mechanical Engineering. Their device made use of a vertically aligned instrument to keep water overflow at a minimum during descent and incorporated various elements that were printed in a 3D printer.     

Doctor Bob’s TechnoBrain competition is made possible thanks to the generous support of Robert Shillman (Doctor Bob), a Technion Guardian who received an Honorary Doctorate from Technion in June, 2018.

Also present at the event were Neev-Ya’s parents, Prof. Emeritus David Durban of Technion’s Faculty of Aerospace Engineering and his wife Rachel. Judging the competition was Prof. Alon Wolf of the Faculty of Mechanical Engineering.

Moderator, Prof. Irad Yavneh of Technion’s Faculty of Computer Science was responsible for the competition’s energetic vibe and Sheer Haan of the Faculty of Architecture and Town Planning skillfully coordinated the event.

On Monday, 10.6.2019, between 11:00 – 14:00, the Neve Sha’anan Gate will be closed to traffic.

This coming Monday, 10.6.2019, a traffic sign gantry will be erected at the Neve Sha’anan Gate at Technion City.

When the gantry is being lifted into place, (between 11:00 – 14:00), the Neve Sha’anan Gate will be closed to
traffic.

Cars that want to enter the campus during the aforementioned time frame can do so via Nesher
Gate.

The exit via Neve Sha’anan Gate will remain open throughout the lifting operation.

In an emergency, please contact the Security Center by calling 2222.

Better Than Staples and Pins – Hot-Glue Gun Fuses Biocompatible Tissue

Hot-glue guns can be used for more than putting together cardboard furniture, home decorations, and toys. In fact, researchers at the Technion–Israel Institute of Technology have developed a hot-glue gun to adhere human tissues that have been seriously injured.

Prof. Boaz Mizrahi

Most serious injuries are currently treated with pins and stitches that have many drawbacks. For the patient, they are very painful, leave scars, require high skill from the doctor, and sometimes have to be removed after the tissues heal. Medical glue, on the other hand, can produce improved medical and cosmetic results.

Such tissue bioadhesives are widely used in dermatology, surgical theaters, and in the field. But even though they have advantages over sutures and staples, currently available tissue glues are limited by their mechanical properties and toxicity. Because they are very toxic, they can be utilized only on the surface of the skin. In addition, hardening of the glue may make the organ less flexible or the adhesion may not be sufficiently strong.

With these limitations in mind, researchers have long been trying to develop a glue that is suitable for different tissues, non-toxic, and flexible after hardening. Such a glue would also need to decompose in the body after the tissue is fused together.

In an article published recently in the journal Advanced Functional Materials, Biomaterials Laboratory head Prof. Boaz Mizrahi and doctoral student Alona Shagan introduce a very strong, non-toxic tissue adhesive that remains flexible even after solidification.

Melting the glue and smearing it on the damaged tissue is performed with a hot-glue gun. Unlike the glue guns with which we are familiar, this gun warms the glue to a moderate temperature – just above that of the body – so as not to cause a burn. After the glue is applied, it quickly hardens and decomposes within a few weeks. The adhesive is also suitable for the adhesion of tissue inside the body, and it is four times as strong as existing adhesives used for this purpose. Tested on cells and laboratory animals, it was effective and nontoxic.

Doctoral student Alona Shagan

Doctoral student Alona Shagan

The new approach is based on a biocompatible, low-melting-point, fourarmed Nhydroxy succinimidemodified polycaprolactone (starPCLNHS). StarPCLNHS is inserted into a hot-melt glue gun and melts upon minimal pressure, the team wrote. It is squeezed directly onto the wound, where it solidifies, bonding strongly with both edges of the wound. Changes in molecular weight allow control of adhesive strength, melting point, and elasticity properties. In-vitro and in-vivo evaluations confirm the biocompatibility of this system. The straightforward synthetic scheme and the simple delivery method – combined with the desirable mechanical properties, tenability and tissue compatibility – are desirable traits in wound management.

The researchers believe the new concept will lead to the development of devices that will reduce the use of stitches, staples and pins, speed up the healing process and reduce scarring.

For the full article click here

Wearable Devices for Medical Diagnosis: An International Conference at the Technion

On May 13-14, the First International Conference on Wearable Devices for Medical Diagnosis was held at the Technion–Israel Institute of Technology in Haifa. Attended by industry and academic personnel from all over the world, the conference was led by Professor Hossam Haick, head of the Nanomaterial-based Devices Laboratory at the Wolfson Chemical Engineering Faculty and a member of the Russell Berrie Nanotechnology Institute (RBNI).

Conference participants

“The field of ​​wearable devices has been gaining momentum in recent years, and today there are wearable diagnostic technologies such as smart watches and smart clothes,” said Prof. Haick. “But they are often inaccurate or limited in the variety of possible applications. The way to leapfrog ahead in this area is biochemical sensing – precise monitoring of physiological conditions based on chemical monitoring of the skin and of various organs. We aim to produce non-invasive – or almost non-invasive – monitoring technologies and to connect the sensors to IOT (Internet of Things) infrastructures, so that multiple data can be collected and analyzed electronically for the benefit of the medical staff.”

Conference lectures focused on a wide range of topics that included pulmonary function monitoring, cardiac activity monitoring, the development of medical monitoring sensors, and innovative skin patches for rapid and inexpensive monitoring of tuberculosis.

Dr. Andrey Broisman, scientific director of engineering at the Ministry of Science and Technology, greeted the conference participants and presented the Ministry’s support channels for Israeli science and international cooperation.

The opening lectures were delivered by Prof. Kenneth Suslick of the University of Illinois and Prof. Corrado di Natale of the University of Rome. Prof. Suslick presented the solutions developed in the last decade in the field of sensors that are likely to play a major role in the diagnosis of diseases by wearable technologies. These include inexpensive sensors that decompose, as well as ones that mimic the natural olfactory system and provide a visual output that describes the object’s odor properties.

“In fact, we developed a system that identifies the ‘molecular fingerprint’ of odors, enabling accurate electronic mapping of the components of odor and monitors toxic gases and spoiled food,” said Prof. Suslick. “They can distinguish among different types of coffee, whiskey, etc. In medicine, we have been able to perform continuous monitoring over time and identify biological markers of heart and kidney disease, and no less importantly, monitor bacterial resistance to medications.”

Prof. di Natale described his approach to electronic monitoring of biochemical materials related to human health. This approach, “combinatorial selectivity,” simulates the natural system of human smell sensing. “A person has about 350 smell sensors that can differentiate among millions of sources of odors,” he said. “Inspired by the human olfactory system, we have developed a technology that makes it possible for us to monitor malaria and cancer and also to distinguish among different types of cancers.”

Ph.D. candidate Muhammad Khatib of the Haick Research Group presented innovative technology in the world of wearable monitoring – flexible sensing systems that can repair themselves.

“When we speak about wearable equipment,” said Mr. Khatib, “we want systems that can stretch and are flexible, but they also must be self-correcting, which we developed with inspiration from nature and the support of the Bill and Melinda Gates Foundation.”

“Animals have the ability to repair damaged tissues in their body, and that is the characteristic that we want to copy,” Mr . Khatib continued. “What we have developed is a polymer-based transistor that can repair itself not only structurally and mechanically, but also in terms of its electrical properties. After we saw that it succeeded in fixing itself when we cut it, we repeated it in various types of water, even seawater, and found that it quickly repairs itself and recovers its previous capabilities. The significance of this is that these devices can work in the damp environment of biological tissue, on sweaty skin, and so forth.”.

The conference was held at a unique time in terms of the international activities of the Nanomaterial-Based Devices Lab, namely the completion of the SniffPhone consortium and the opening of two new clusters: VOGAS and A-Patch. The three consortia are part of the Horizon 2020 program of the European Union, which allocated a total amount of 18 million euro to them.

The SniffPhone system is based on a smartphone-related technology for speedy diagnosis of cancer and other diseases based on the patient’s breath. The new hardware is a system the size of a smartphone into which the patient exhales (without the need to hold it directly on the mouth). The data are transmitted via mobile phone to the “cloud” in which the information is analyzed and the results are transmitted to the attending physician. Vogas, a consortium of academics and industry partners from Europe and Latin America, is continuing the same project for eventual clinical implementation.

A-Patch, a consortium of researchers from academia, hospitals, and various companies, is working for the continued development of a cheap and reliable patch for tuberculosis (TB) surveillance. TB, one of the world’s most infectious and deadly diseases, accounts for about 1.8 million deaths each year.

The current diagnostic method, a skin test, requires laboratory services and takes a long time. The skin test is a process that involves injecting a substance (tuberculin) into one of the arms, testing the skin reaction after a few days and repeating the whole process in the other arm two weeks later. The development on which the new consortium works is a small, inexpensive, disposable diagnostic sticker that will cost about $1.50. A multiple-use sticker will cost about twice as much. The label reads the patient’s physiological data and attaches it to a smartphone. This data is then transferred to the cloud for analysis and diagnosis by a physician. The Bill and Melinda Gates Foundation has been involved with the project for several years.

 

An artificial black hole provides quantitative confirmation of the temperature and thermality of Hawking radiation

During his distinguished career as a theoretical physicist and cosmologist, the late Stephen Hawking predicted that black holes – invisible and massive phenomena in space with such strong gravity that nothing, even light, can escape its deep, dark grasp – emit radiation.  This Hawking radiation should have a thermal spectrum, similar to the radiation from any warm object. The temperature of the Hawking radiation should agree with the temperature predicted by Jacob Bekenstein.

Professor Jeff Steinhauer
Photo credit: Technion Spokesperson’s Office

Now, a team of researchers from the Department of Physics at the Technion–Israel Institute of Technology have created an artificial black hole in which sound plays the role of light. By devising a way to measure the spectrum of Hawking radiation, they have found that artificial black holes do emit radiation like an ordinary warm object, as Hawking’s predictions asserted.

A paper explaining their groundbreaking research appeared in the May, 30 2019 issue of Nature.

Almost four decades ago, a theory emerged suggesting artificial black holes could be constructed and used to measure the physics of Hawking radiation, a type of thermal radiation, the existence of which Hawking predicted in the 1970s and which now bears his name. However, it was the task of creating an artificial black hole, and devising ways to measure the spectrum of Hawking radiation and its temperature, that led to the recent breakthrough.

“Our artificial black hole provides confirmation of the thermality of Hawking radiation,” explained lead researcher Professor Jeff Steinhauer. “In addition, we found that the temperature is determined by the artificial gravity at the surface of the artificial black hole, also consistent with Hawking’s predictions.”

The success of their work is yet another profound insight into the nature of black holes, among the most mysterious and least understood secrets of the universe.

The concept of an object in space with gravitation fields too strong for light to escape was considered in the 18th century. The first modern theory about the existence of black holes was developed in 1916, but not fully characterized and considered to be just mathematical curiosities until the late 1960s, when theories were sparked by knowledge about the collapse of massive stars. Although they could not be seen, a consensus was soon reached that black holes existed in most galaxies.

Having studied this phenomenon and problem for a decade, the research team made constant improvements to their experimental tools over the last three years. The goal was to not only create artificial black holes, but also to develop methods to make measurements to check Hawking’s predictions. To reach their conclusions, the Hawking radiation experiment was repeated 7,400 times providing a density profile for each “run”, from which the researchers computed averages.

“Theoretical works, combined with our long-term study of this subject, allowed for the observation of spontaneous Hawking radiation in an artificial black hole,” reported Steinhauer.  “The improvements in our experimental apparatus allowed us to measure the thermality of the Hawking spectrum and compare its temperature with Hawkings’ prediction, given by the surface gravity.”

According to the researchers, this temperature (as predicted) provides an interesting link between the theories of Hawking and those of astrophysicist Jacob Bekenstein.  In 1972, Bekenstein also presented a theory on black hole thermodynamics.

“Remarkably, although their calculations were based on very different ideas, both Hawking and Bekenstein came up with the same conclusion that the temperature was determined by the gravity at the surface of the black hole,” said Steinhauer. “We confirmed their predictions.”

While the discovery made by the Technion physicists makes clearer the nature of artificial black holes by measuring the spectrum emitted (very similar to the spectrum that would be emitted by an ordinary warm object), the low levels of radiation not only confirm Hawking’s theory, but could also lead to further research.

According to Steinhauer and his team, their findings provide not only hints about the nature of real black holes, but also about the “information paradox.” According to Hawking, the radiation and its thermal spectrum contain very little information. This idea is the basis of the information paradox, which poses questions such as: What is the fate of information that falls into a real black hole? Does it disappear from the universe? And, if not, where does it go?

The researchers found that the spectrum of the Hawking radiation is indeed thermal.  So, the information paradox remains unresolved with future researchers needing to look elsewhere to investigate the information paradox enigma.

 

Technological Innovation for the Benefit of Competitive Sports

The First Scientific Conference of the Israeli Olympics Sports Research Center – aimed at using scientific knowledge to improve sports performance – was held recently at Technion – Israel Institute of Technology in Haifa and was attended by leading researchers and scientists, as well as senior coaches from Israel and members of the sports-tech industry, along with guest lecturers from the USA and England.

The conference was held at Technion’s Faculty of Mechanical Engineering on Wednesday, May 15, as part of the Annual Belfer Symposium and a new cooperation venture between Technion and the Olympic Committee of Israel.  

The research center which encourages applied research for advancing Olympic Sport in Israel is headed by Prof. Alon Wolf of Technion’s Faculty of Mechanical Engineering and directed by exercise physiologist Muli Epstein, Scientific Director of the Olympic Committee in Israel,  and its Elite Sports Unit.

Among the scientific and technological challenges in the field of athletic achievement that were discussed was the challenge of breaking the two-hour barrier in marathon races. Running a marathon in less than two hours is not only a physiological challenge, and new developments in the field of footwear and nutrition may soon provide the answer. Experts agree that it is possible to beat the record, and many believe that Kenyan Olympic runner Eliud Kipchoge may achieve the new record in the near future.

Prof. Yannis Pitsiladis, an expert in sports and exercise science at England’s Brighton University and a world expert on the genetic and environmental effects of athletic performance, spoke about the enormous challenge of breaking the two-hour barrier in a marathon run. He stated that this is possible as, “The borders are not fixed, and by investing time and energy, they can be extended.” However, he added that this goal requires cooperation among researchers in various fields, including nutritionists, biomechanics and data scientists. “We need to develop  tools with which to inject carbohydrates into the runner’s body effectively, and to provide him/her with intelligent sensing systems that monitor physiological variables and provide feedback on his/her condition in real time.”

Dr. Alison Sheets, Senior Biomechanics Researcher at Nike, whose research focuses on the biomechanical mechanisms that limit the performance of athletes through experimental and computational approaches. Her lecture addressed the contribution of equipment innovation in improving athletes’ sports performance.

“Why can’t I run faster, why can’t I jump higher? These questions keep me awake,” said Nike’s Dr. Sheets, who seeks to improve the athletic performance of the super athlete. Established in 1980, Nike’s Biomechanics Laboratory’s goal is to develop ways to overcome existing limitations and enable athletes to improve their achievements while reducing injuries.

“Since the 1980s, tremendous scientific developments have taken place, including the power of computing, data science and 3D printing, which give us new tools to combat  sporting challenges,” Dr. Sheets added.

Prof. Wolf said that the research center was designed to promote Israeli sports on three levels – the physiology of the individual athlete, the technology of the equipment and the interaction between the two. During the conference, Prof. Wolf and Muli Epstein presented a fascinating talk about the history of scientific research in Olympic Sports and the current challenges in the field.

“We recently inaugurated the Israeli Center for Olympic Sports Research – a joint cooperation between the Olympic Committee and  Technion, which is a leading body in science and technology,” said Gili Lustig, CEO of the Olympic Committee of Israel. “I have no doubt that together, we can improve the training patterns and physiological tracking of our athletes and thus lead them to new heights.”

Yael Arad, Israel’s first athlete to win an Olympic silver medal and Board Member of the Olympic Committee of Israel and Chairman of the Sports Committee, said that, “The cooperation with Technion is at one with the quantum leap in the goals that we have set for ourselves. If we have so far aimed at returning from any Olympics with one or two medals, now we want to achieve more. Not only to be good but to be the best. And for that we have to focus on things that we are not good at, and to improve and bring measurable results, and in short – more medals. It is a long-term process whose benefits will be seen only at the 2024 Olympics and perhaps even later. But it will happen if we will be patient, determined and consistent.”

Dr. Maya Benzoor-Cale, Director of the Department of Physical Therapy at the Center for Sports Medicine and Research at Israel’s Wingate Institute, focuses her research on movement in rehabilitation and sports, and especially on how science fits into the clinical treatment of Olympic athletes.

Prof. Anath Fischer, of Technion’s Faculty of Mechanical Engineering, spoke about a bionic hand (a 3D printed hand) simulation using artificial intelligence (AI).

Following the conference, four Israeli Olympic trainers presented challenges from their respective fields to researchers at the new center. Niv Libner, coach of Israel’s women’s cycling team, sought to develop tools to improve training and decision-making in training and races. Rogel Nahum, who represented Israel three times in triple jumps in the Olympic Games, said that these areas are desperate for tools to improve the accuracy of running and hitting the jumping board. Sailing coach Gur Steinberg sought to develop precise methods for measuring distances and learning how world-champion sailors succeed. Claudia Laciga, coach of the Israel Beach-Volleyball Team, said the players needed tools that would improve their ability to read the opponent and his intentions.”

Following the conference there was a visit to the research laboratories of the Israeli Center for Olympic Sports Research on campus.

The 1st conference of the Israeli Olympic Sports Research Center will take place at  Technion on May 15 with the participation of senior researchers from Israel and around the world

How can technologies used to test the characteristics of aircraft wings be utilized to assist the Israeli windsurfing team?

Running a marathon in less than two hours – is this only a physiological challenge? New developments in the field of footwear and nutrition will soon provide the answer.

Can mathematical models help coaches reduce the number of disqualifications in the long jump and triple jump events?

3D printers, a bionic hand and artificial intelligence – from the world of medicine to the world of sports.

The Israeli Olympic Sports Research Center’s first scientific conference – a new collaboration between  Technion – Israel Institute of Technology and Israel’s Olympic Committee, will take place on Wednesday, May 15th. The Center, headed by Prof. Alon Wolf of Technion’s  Faculty of Mechanical Engineering, and directed by Israel’s Olympic Committee and the Sports High Performance Unit, encourages applied research that will advance Olympic sport in Israel, across all its branches. The conference will take place at the Faculty of Mechanical Engineering at Technion as part of the annual Belfer Symposium, and will be attended by senior coaches, scientists and researchers, members of the sports-tech industry and guest lecturers from the United States and England.

Key speakers at the conference:

  • Dr. Alison Sheets, Senior Biomechanics Researcher at Nike. Her research focuses on the biomechanical mechanisms that limit the performance of athletes through experimental and computational approaches. Her lecture will address the contribution of equipment innovation in improving the sports performance of athletes.
  • Prof. Yannis Pitsiladis, Professor of Sports and Exercise Science at Brighton University, England. A world expert on the genetic and environmental effects of athletic performance, he will talk about the enormous challenge of breaking the two-hour barrier in a marathon run.
  • Dr. Maya Benzoor- Cale, Director of the Department of Physical Therapy at Wingate Institute for Sport Medicine and Research, will talk about movement in rehabilitation and sports: How science fits into the clinical treatment of Olympic athletes.
  • Prof. Anath Fischer, of Technion’s Faculty of Mechanical Engineering, will talk about the bionic hand (a 3D printed hand) simulation using artificial intelligence.
  • Olympic athlete  Rogel Nahum,  Gur Steinberg, coach of Israel’s windsurfing team,; professional cyclist Niv Libner,  and Claudia Laciga, coach of the Israeli women’s beach volleyball team, will challenge the scientists and pose professional questions seeking scientific solutions.

For the full conference itinerary click here.

Following the conference, there will be a visit to the research laboratories of the Israeli Center for Olympic Sports Research.

Journalists and photographers are welcome to attend and must register in advance

1st conference of the Israeli Olympic Sports Research Center

1st conference of the Israeli Olympic Sports Research Center

 

 

1st  International Conference on Wearable Devices for Medical Diagnosis 

May 13-14 at  Technion-Israel Institute of Technology in Haifa

Technion-Israel Institute of Technology will hold the first international conference of its kind in Israel on Wearable Devices for Medical Diagnosis on May 13-14. Academics and industry representatives who work in the field will participate.

The conference will be headed by Prof. Hossam Haick, Head of the Laboratory for Nanomaterial-Based Devices at the Wolfson Faculty of Chemical Engineering and a member of the Russell Berrie Nanotechnology Institute (RBNI).

The conference will deal with the integration of technologies and products for medical monitoring that are now available on the market and biochemical sensing technologies – accurate monitoring of physiological conditions based on chemical monitoring of the skin and various organs.

The lectures will cover a wide range of topics, including pulmonary function monitoring, monitoring of cardiac activity, the development of sensors for medical monitoring and innovative skin patches for speedy and inexpensive monitoring of tuberculosis, and the development of monitoring patches that decompose. In addition to dealing with breakthrough technologies in the field of wearable devices, some lectures will also relate to social aspects of ethics, security, and privacy.

The conference will begin on Monday, May 13, at 9: 00 a.m. Opening words by  Prof. Hossam Haick and Andrey Broisman, Director of Applied Science and Engineering at Israel’s Ministry of Science and Technology.

Conference  Main Speakers :

Prof. Kenneth S. Suslick of the University of Illinois, an expert in the development of advanced sensing systems

And Prof. Corrado Di Natale of the University of Rome, an expert on sensors and sensing systems.

Additional topics include bridging the gap between biochemical sensors and the digital world, energy conversion systems for wearable applications, electronic “skin” for monitoring brain activity (Haick Laboratory), and monitoring lung function using wearable Nano-sensors as well as wearable devices for monitoring heart activity. 

For the full conference program please click here

Reporters and photographers are asked to register in advance,

Remarks by Technion President, Prof. Peretz Lavie, at the Technion Memorial Day Ceremony.

שוב הגיע היום הקבוע בלוח השנה, בו אנו מתכנסים כאן, מול קיר הזיכרון ועליו שמות הנופלים, בני משפחת הטכניון שנפלו במערכות ישראל ובפעולות האיבה. יום הזיכרון לחללי מערכות ישראל ופעולות האיבה הוא יום נדיר, יחיד ומיוחד בלוח השנה הישראלי.

על לוחות הזיכרון, כאן וברחבי הארץ, סביבם אנו מתקבצים ביום המיוחד והקשה הזה חקוקים שמותיהם של הנופלים כולם. הצעירים, המבוגרים, ההורים, הבנות והבנים של כולנו. מאחורי כל שם מסתתר סיפור עצוב וכואב על אב, בן, אח או אחות ששילמו בחייהם על זכותנו לחיות כאן בביטחון ובשלווה.

למעלה מ-25 אלף אישה ואיש, חיילים ואזרחים, נהרגו בקרבות, פיגועי טרור ותאונות אימונים. רשימה ארוכה, מרה וקשה.  רשימה שהיא תזכורת תמידית לאיום הקיומי המרחף מעלינו מראשית ההתיישבות בארץ ועד עצם הימים האלה.

ארבעה שמות חדשים נוספו לרשימה רק בימים האחרונים: משה אגדי,  משה פדר, פנחס מנחם פשווזמן וזאיד אלחמאמדה. 4 אזרחים שנהרגו בידי מחבלים בסבב הטרור שהסתיים רק אתמול. יהי זכרם ברוך .

לצדו של השכול המוכר והכואב כל כך מתקיים לו סוג נוסף של שכול. קשה ומר לא פחות, ויש שיאמרו אפילו יותר. זהו כאבם של בני המשפחה, חבריהם ומכריהם של חללי צה”ל שמקום קבורתם לא נודע ושל הנעדרים, אלו שיצאו לקרב ואשר גורלם אינו ידוע בוודאות.

היעדר הוודאות בדבר גורל יקירם היא גזירה אכזרית מאין כמוה עבור בני המשפחה. קרועים בין ייאוש לתקווה, מיטלטלים בחוסר יכולת למצוא מזור לנפש הדוויה, הם נדונים להמתין. המתנה ארוכה, מייאשת ומייסרת. המתנה מכלה את הימים וטורפת את הלילות. ימים ושבועות הופכים לחודשים, שנים הופכות לעשורים. את התקווה לאות חיים או לשובו של הבן האובד מחליפה תפילה חרישית לקבר, לציון זכר כלשהוא.

וכך הם חיים ומתים בינינו – הנוכחים הנפקדים של משפחת השכול הישראלית.

בחודש שעבר נקרע צוהר קטן לעולמן של משפחות הנעדרים, עם הבאתו לקבר ישראל של זכריה באומל ז”ל, אחד משלושת נעדרי קרב סולטן יעקב, כמעט 37 שנים לאחר שנפל בקרב על אדמת לבנון. אביו של זכריה, יונה ז”ל, שהלך לעולמו לפני עשור, הפך בעל כורחו לסמל של משפחות הנעדרים ובשברון ליבו האמין עד יומו האחרון כי בנו חי ומוחזק בסתר בשבי.

אחותו של זכריה, אסנה הברמן, ספדה לו בבית העלמין הצבאי בהר הרצל וחשפה בדבריה טפח מעולמם של משפחות הנעדרים, כשתיארה את תחושתה בביטוי “עין אחת בוכה ועין אחת צוחקת”, כשהיא מכוונת לתערובת הבלתי אפשרית כמעט של אבל, שכול והקלה. בסיום דבריה פנתה אסנה לאחיה ואמרה לו: “אנחנו נפרדים ממך היום. אני משחררת אותך לאדמה כי טובה היא מאוד. נוח בשלום על משכבך אחי היקר”.

גם אנחנו, במשפחת הטכניון נחשפנו לכאבן העצום של משפחות הנעדרים במס’ הזדמנויות. את סיפורו של הנעדר הראשון, רפאל מוקדי ז”ל, ששמו מופיע כאן על הלוח מאחורי, סיפרנו בעצרת יום הזיכרון לפני שנתיים. רפי, שנהרג במהלך הפריצה לרמת הגולן במלחמת ששת הימים, נחשב לנעדר במשך שמונה ימים, עד שחבריו, שיצאו לחפשו בכוחות עצמם, מצאו את גופתו בשטח – לא הרחק מן המקום בו נפגע. הפרשה כולה, על ספיחיה השונים, ובהם ניסיונות הטיוח וההסתרה של מחדל הפקרתו של רפי ז”ל בשטח,  הותירה צלקת עמוקה בליבם של בני המשפחה והחברים.

הסיפור השני הוא סיפורו של אהוד גולדווסר ז”ל.

בבוקר ה-12 ביולי 2006,  הותקף סיור שגרתי של חיילי מילואים בגבול לבנון מן המארב בידי מחבלי חיזבאללה. שניים מלוחמי הסיור, אלדד רגב ואהוד גולדווסר, נחטפו בידי המחבלים ללבנון, באירוע שהיווה את יריית הפתיחה של מלחמת לבנון השנייה.

אהוד גולדווסר, אודי בפי מכריו, אמור היה לסיים ביום החטיפה את שירות המילואים שלו ולשוב ללימודיו כסטודנט לתואר שני בפקולטה להנדסת אוירונוטיקה וחלל.

רעייתו של אודי, קרנית, הפכה בין לילה לסמל בעל כורחה. מאבקה חסר הפשרות להשבתו של אודי הביתה, מאבק אותו ניהלה ברחבי העולם במקביל ללימודי התואר השני שלה בפקולטה להנדסה אזרחית וסביבתית, נגע לליבות כולנו ואיחד סביבו את העם כולו בתקווה ובציפייה.

לאחר 735 ימים קשים מנשוא של חוסר ודאות בנוגע לגורלם, הגיעה התעלומה אל קיצה העגום: גופותיהם של אודי ואלדד ז”ל הושבו ארצה והם הובאו למנוחת עולמים.

את שמו של הנעדר השלישי, אין איש בישראל שאינו מכיר.

סרן רון ארד, נווט פאנטום במילואים בטייסת “הפטישים”, נשוי לתמי ואב ליובל התינוקת בת השנה, היה סטודנט להנדסה כימית בטכניון באוקטובר 1986, כאשר נקרא להשתתף בתקיפה אווירית על מטרות מחבלים באזור צידון. תקלה בעת שחרור הפצצות גרמה לכך שרון והטיס, ישי אבירם, נאלצו לנטוש את המטוס שהתפוצץ. ישי חולץ, בעוד שרון נפל בשבי ארגון אמל.  בשנים הראשונות לשביו, עוד התקבלו ממנו סימני חיים בדמותם של מכתבים ספורים ובאמצעים אחרים. אך במהלך 1988, שעה שארגון אמל שהחזיק בו היה שרוי בעיצומו של סכסוך פנימי אלים, נעלמו עקבותיו של רון בשבי. הסברה הרווחת היא כי שוביו ערקו לשורות חיזבאללה כשהוא בחזקתם ומשם ייתכן כי עבר לידי האיראנים. כך או כך, עקבותיו לא נודעו עוד.

ממשלת ישראל, לאחר שדחתה תחילה על הסף את האפשרות לעסקת חליפין בה ישוחררו מאות מחבלים תמורת שובו של רון הביתה, מצאה עצמה כעת בעיצומו של מאמץ מודיעיני ומדיני חובק עולם לקבל אינדיקציה כלשהיא אודות גורלו, אך לשווא.

בישראל נותרו ממתינים ומייחלים לאות כלשהוא רעייתו תמי, בתו יובל, אחיו חן ודודו ואמו של רון, בתיה ארד ז”ל, שהלכה לעולמה בלא שתדע מה עלה בגורל בנה.

היטיב לסכם את הדברים אורי לוברני ז”ל, האיש ששימש במשך שנים רבות כמתאם פעולות הממשלה בלבנון. בריאיון שהעניק לפני שנים אחדות, אמר לוברני: “עד היום, בכל בוקר אני נזכר ברון ארד כשאני מתגלח. אני עומד מול המראה ושואל את עצמי אם באמת עשינו את כל מה שיכולנו, ואין לי תשובה. זה ילווה אותי עד יומי האחרון”.

בחודש אוקטובר הקרוב ימלאו 33 שנים לנפילתו של רון בשבי. מדינת ישראל עשתה כברת דרך משמעותית מאד בכל הנוגע לטיפול בנושא הנעדרים, מאז נאלצו חבריו ובני משפחתו של רפי מוקדי לצאת לשטח ולחפש אותו בעצמם. למודי הניסיון המר של פרשת רון ארד, שילמו ממשלות ישראל בעשורים האחרונים מחיר כבד מאד בעסקאות חילופי שבויים על מנת להשיב שבויים וחללים הביתה, לא פעם בצלו של ויכוח ציבורי נוקב.

גם המשפחות הפיקו את הלקח הנדרש ואת מקומה של התחינה האילמת של משפחות ארד, באומל, כץ ופלדמן, החליפו הקמפיין הבינ”ל הפומבי של משפחות רגב וגולודווסר, המאבק הציבורי שהביא לשחרורו של גלעד שליט וזה, שעדיין מתנהל, של משפחות גולדין ושאול הפועלות להשבת גופות בניהן מידי חמאס ושל בני משפחתם של אברה מנגיסטו והישאם אל-סייד המוחזקים בשבי החמאס.

השבתו הטרייה של זכריה באומל ז”ל לקבר ישראל מוכיחה כי הערבות ההדדית, זו שאנו נוטים לא פעם לחשוב כי פסה מן העולם, היא עדיין ערך מרכזי בחברה הישראלית. העובדה כי גם בשעה זו יש מי שפועל ללא לאות ובחשאי על מנת להשיב את הבנים הביתה אין בה כדי להוות נחמה כלשהיא למשפחות המתענות יום יום ושעה שעה, אך היא צריכה להוות תזכורת לנו, הישראלים, בדבר הערכים שאנו רוצים לקדם ולטפח בחברה בה אנו שואפים לחיות.

אינני יודע כמה מכם יודעים זאת, אך שלשום, ה-5 במאי, היה יום הולדתו ה-61 של רון. לו היה כאן היום היה ודאי חוגג אותו בחיק משפחתו, עם רעייתו ובתו יובל, שלא באמת זכה להכיר, ושהיא עצמה כבר אמא לנכדותיו. במכתבים שכתב למשפחתו בשבי ושהגיעו ארצה באיחור של שנים רבות, כתב רון בין היתר: “ועכשיו ליקרות לי מכל, תמי ויובל – אני משתדל לשכוח אתכם כי כל זיכרון שהוא חונק את גרוני, אבל דעו לכם שאני אוהב אתכם וכנראה אתם הסיבה היחידה המונעת ממני לחשוב על הרע מכל. אני מבטיח לכם לפחות את הדברים הבאים:

א. אני עוד אחזור. שנה? שנתיים?

ב. לעולם ושוב לעולם לא אעזוב אתכם שנית אפילו אם אצטרך להפסיק לטוס.

ג. יהיה לנו בית חם ואוהב וטוב כפי שלא היה לנו מעולם”.

יהי זכרם ברוך.

These are the names of Technion’s students, employees, staff and faculty members, who lost their lives during Israel’s military battles and acts of hostility.

מלחמת הקוממיות

שְמוּאל צוּקֶרְמַן
עַמִיחַי אוֹרְלִיַנסְקִי
מרדכי (קְלִיבָּנְסקִי) אלון
בִּנְיַמִין (רָבִּי) אֶלְחָנָן
אליהוּ אַמְסַלֶם
עַמִירַם אַנְקִילֶבִיץ
אַלֶכְּסַנְדֶר בּוּכֶן
שָלוֹם בִּיטִי
יעקב בְּלוֹך
אֶלִיַדָע בּן-שֶמֶש

אֵיתַן בְּרָוֶר
אָמָצְיָה בָּרְלַס
ישראל בַּרְזִילַי
אברהם בַּרְעָם
אוּרִיאֵל בָּש
דוד גוֹלְדֶנְפוּן

עמוֹס גָלִילִי
מרדכי גרוֹסְמַן
גַד גָרְפָיין
נַתַן גֶרְשוּנִי

אברהם דוּבְּנוֹ
רִיכַרְד (וַלְטֵר) דוֹיטְשׁ
צְבִי דוֹרְצִ’ין
מרדכי הוּבֶּרְמַן
מִירָה הֶפְנֶר
דוד וַינְבֶּרג
אַבִיגַיִיל וָויִנְבְּרָנְד
בוֹעָז וִינְקלֶר
שָׁאוּל זִ’יטִין
יהוּדָה זַק

יִצְחַק זָקְס
יעקב חְמִילֶבְסקִי
אברהם טָבָּח
אוּרִיאל טישְלֶר טָל
יִצְחַק יַעָקוֹבִּי
אַריֵה ישְרָאֵלִית
יעקב לוּבָּרְסְקִי
דוד מַהַלְאֵל
צְבִי מוֹנַש
אוּרִיאֵל מוֹרְפּוּרְגוֹ

מֵאִיר נָתָן
זְכַרִיָה פֶלְדְמַן
אַרְיֵה פְּרוּדוֹבְסְקִי
נַחוּם פְּרוּבֶר
בֶּצַלְאֵל פֶּרֶחוֹדְנִיק
סִינַי צִמְחִי

דוד קֶזְשְטֶכֶר
דַנִיאֵל קִמֶלְמַן
בֶּן-צִיוֹן קִיפְּנִיס
אַרְיֵה קֶסֶלְמַן

נפתלי רַבִּינוֹבִיץ
עַמִיאֵל רוֹזַנְסקִי
עַמִירַם רוֹם
משֶה רַנְדֶל
אַרְיֵה שְטוֹרְפֶר
בִּנְיָמִין (ולטר) שְטָיין
שׁמוּאֵל שְׁטֶרְן
צבי שְׁטָרְקְמַן
מאיר כּהן

מלחמת ששת הימים

אלישע בֶּן-יהודה
משה בֶּן-סִירָה
אַרִיאֵל בַּרוּכִי
עוּזִי גֵרְסְטמַן
משה וִיזֶל
עוֹדד חֶן
יוּבַל לֶוִי
רפאל מוֹקָדִי
גִיוֹרַא נֶצֶר
אַמִיר פוֹיכְטוַונְגֶר

אלכסנדר קְלִיגְסְבֶּרְג
יצחק שְׁטָדְלֶר
צְבִי מָלְכִּיאֶלִי

מָרְדְּכַי פְרִידְמַן

יַעֲקֹב רוֹנֵן

מלחמת ההתשה ותקריות

יוֹרם שחם (ויינראוב)
עַטָא עָאדֶל
מרדכי אֶלְעַזָר
אֶהוּד אֶטִינְגֶר
יְשָׁעיהוּ וַיְסְמַן
עוֹדֵד לֶוִין
פִּנְחַס רַסְנֵר
בָּרוּך שָׁנִי (יִדוֹבְנִיק)
עוֹדֵד שְׁלִידוֹר
עָמִיקָם שָׂגִיא

מלחמת יום הכיפורים

משה אַבּוּ-קָסִיס
חיים אַבִיטַל-אַבּוּטְבּוּל
ישעיהו בּוּקשְפַּן
אברהם בְּלוּם
דוד בְּלָט
דב בְּלֶיימַן
משה בְּלָיֶיר
דְרוֹר בֶּן אַרוֹיוֹ
עוֹדֵד בֶּן דְרוֹר
יוֹסֵף בֶּן הַדָר

אַרִיאֵל בָּרְזִילַי
רֵפָאֵל בָּר-לֵב
שׁמוּאֵל בֶּרְקְמָן
אריה בָּרָץ
יוֹאֵל גוֹטְלִיבּ
אֵלִיאָב גוֹלְדְמַן
מִיכָאֵל גוֹלָן
גָבְרִיאֵל גוּר אַרִיֵה
אברהם גָנְץ
דַוִד גֵ’יקוֹבְּס

דוֹרוֹן גְרִינְוָולְד
נַתַן דַוִידוֹבִיץ
דַוִד דוֹתָן
משה דָנִינוֹ

אַמִיתַי הַלְפֶּרְן
ישעיהוּ וִינוֹגְרָד
שמעון וָעקְנִין
משה וַקְס
מִיכַאֵל וָרְדִי
פֶּסָח זִילְבֶּרְשְטֶיין

אַשֶׁר חָדָד
אוֹרֶן טָמִיר
יהוֹשע יָהַלוֹם
מֵאִיר יוֹל
מָרְק יֵמֵס
דָוִד יִשַי (בן אלחנן)
דָוִד יִשַי (בן דוד)
נִיסַן כָּץ
רפאל לֵב
אַהַרוֹן לֶבָּיוֹב

שָׁאוּל לֵוִי
שִׁמְעוֹן סִנְיֶה לֶוִין
מֵנַחֵם לוּנְץ
נַחוּם לַנִיָאדוֹ
יִצְחַק מָאוֹר
יהוּדה מוּנְהַיִיט
יוֹרם מִינְצְבֶּרְג

יעקב נָדְל
דָנִיאֵל נוֹימָן
ירמיהו נֵטֵל

עַמִיאֵל נַכְט
עוֹדֵד נִיסִים
נַפְתָלִי סִידְרֶר
אִילָן סְפִינְיָה
שָׁלוֹם עֵין-גָל
משה פוֹגֶל
מֵנְדִי פֶּלֶד-פַיְיבִּיש
דוד פֶלְדְמָן
עָמוֹס פְרִיד
אֵילוֹן פְרִידְלֵנְדֵר

מִיכַאֵל פְרָיְיבֶּרְג-הַרְאֵל
דוד פְרֵנְקֵל שֶׂגֶב
שְׁמוּאֵל קוֹכָן
יוֹחנן קוֹמֵיי
יעקב קוֹך
מרְדֵכַי קִיטַאי
יוֹסֶף קְלַיין
חַיים קַפְּלָן
חַיים קָצִין
אֵלִיהוּ רָגוּלְסְקִי

רָמִי אברהם רוּבִּין
דוד רוֹזֵנְצְוַייג
שָׁלוֹם רָז
שָׁאוּל רָחוּמָה
חָנוֹך רָיְיבֶּר
חָנוֹך רֵכְלֵס-כְּנַעַן
זאב שֶׂגֶב
אֱלִיעֶזֶר שְׁטִיאַסְנִי
משה שִׁירִי
חַיים שָׁרְל

טוּבִיה תוֹרֵן
רָאשָן קָשָאִני חָמִיד
כַּתְרִיאֵל טָאוֹ
יצחק בָּזַם
משה וִיטְנֵר
תָמִיר יָעָרִי
אילן קְלֶפֶּר (פלורין)
אַבִי רַבִּיעַ
מנחם בְּרֶנֶר
מֵאִיר שְׁפִּינֵר

דוד כּוֹכַבִי

מלחמת שלום הגליל

גַבְרִיאֵל אוֹחָנָה
אִילָן גַדְסִי
דוד מַנְצוּר
רוֹנִי שַׁחְמוֹן
דָנִי מֵלַמֵד
משה פִינְקֵלְשְטֵיין
מִיכַאֵל לַפִּידוֹת

תקריות

אִילַן ישראל קַאוֹפְמַן
רוֹנֵן ישׂרַאֵלִי
יֵהוֹרַז כָּשֵׁר
ולרי גַנְזְמַן
נִיבִ-יה הַדַס דוֹרבַּן

מבצע חומת מגן

ניר דַנִיאֵלִי

מלחמת לבנון השניה

אהוד (אודי) גולדווסר

פעולות איבה וטרור

שרון שטיינמֵץ
יחיאל שי פִינְפְטֵר