While chemotherapy is often a life-saving treatment for cancerous tumors, choosing the right chemo for each patient remains an unmet clinical challenge. Furthermore, current chemotherapies cause harsh side effects and damage healthy organs alongside the tumors.

“We want physicians to have better tools for predicting which drugs would be best for each patient, and get them to the target site more efficiently,” says Prof. of Chemical Engineering Avi Schroeder, Head of the Technion Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies.

Prof. Avi Schroeder

Prof. Avi Schroeder

Drug delivery systems in use today surprisingly dispatch only 10% or less of a drug dose to the tumor, with the remaining 90% distributed elsewhere in the body. “It’s better than untargeted systems, but it’s far from ideal,” says Prof. Schroeder.

Schroeder and his team are developing nanosized “factories” that manufacture protein-based cancer drugs inside the body upon reaching the tumor site. Mimicking the protein-manufacturing strategy found in nature, the factories contain ribosomes, amino acids and enzymes—the building blocks needed to synthesize the desired protein-based drug.

At 150 nanometers or smaller—1/1,000 the diameter of a strand of hair, these factories are injected into the patient and circulate in the blood until finding the tumor. Since many tumors have leaky blood vessels with pores that are several hundred nanometers wide, these factories are small enough to penetrate.

Other researchers have developed systems that release drugs inside the tumor, but Prof. Schroeder and his team are the first to manufacture drugs inside the tumor. “This is the first proof of concept that you can actually synthesize new compounds from inert starting materials inside the body,” says Schroeder.

His system promises to allow physicians to tailor drugs specifically for each patient, and will allow the patient to receive a more concentrated dose of the drug only where it is necessary, thus escaping the harsh side effects.

After earning his PhD at Ben Gurion University and postdoctoral studies at MIT with Prof. Robert Langer, Schroeder returned to Israel. Courted by several universities, he received a Horev Fellowship through the Henry and Marilyn Taub Foundation Leaders In Science and Technology Faculty Recruitment Program, and accepted a position at the Technion in 2012.

Prof. Schroeder is widely published and has received more than 20 awards including TevaTech Graduate Student Award in Chemistry and Biology, Intel PhD-Student Award for Research in Nanotechnology, the Wolf Foundation PhD-Student Award, the prestigious Polymer Advanced Technologies 2013 Young Scientific Talents Award, and the Allon Fellowship.

Technion-Israel Institute of Technology is a global community. In this video students and President Prof. Peretz Lavie wish you Happy New Year for 2015 in 14 different languages.
Technion is the place where dreams come true.

In order of appearance:

  • Eric Yudin in English – Computer Science
  • Johanna Wallin in Swedish – Civil & Environmental Engineering
  • Tali Tazazo in Amharic – Electrical Engineering
  • Eshhar Tal in Hebrew – Civil & Environmental Engineering
  • Efrat Vitchevsky in Russian – Medicine
  • Micael Zollmann in Afrikaans – Civil & Environmental Engineering
  • Ahmad Omari in Arabic – Energy Program
  • Michal Brodeschi in Portuguese – Architecture & Town Planning
  • Rashmi Kothari in Hindi – Chemistry
  • Wen-Hui Hung in Chinese – Industrial Engineering & Management
  • Fred Xie in Chinese – Civil & Environmental Engineering
  • Hanqi He in Chinese – Civil & Environmental Engineering
  • Davide Schaumann in Italian – Architecture & Town Planning
  • Irene Alvarez-Sostres in Spanish – Architecture & Town Planning
  • Deborah Cohen in French – Electrical Engineering
  • Dr. “Bob” Shillman in English – A Man and a Cat Called Yitz
  • Prof. Peretz Lavie in English – Technion President
  • Valentin Garbe in German – Electrical Engineering

The Landau Prize for the Sciences and Research to be Awarded to Technion Professor David Gershoni, for his Research Contributions Leading to the Production of Entangled Photons

Prof. David Gershoni

Prof. David Gershoni

Prof. David Gershoni, from the Department of Physics at the Technion, will receive the 2014 Michael Landau Prize for Sciences and Research awarded by Mifal Hapais (the Israel State Lottery) enterprise, for his research contributions, which have led to the development of a prototype for producing entangled photon emissions. The Prize Committee noted that “This method is significantly different from its predecessors; its advantage lies in its capability to create multiple devices and thereby generate entangled photons on demand. This has important experimental implications for research in the field of quantum information.”

Prof. Gershoni earned his academic degrees at the Technion. In 1986 (at age 33) he pursued his postdoctoral studies at Bell Laboratories headquarters in New Jersey, and after one short year he was accepted there as a faculty member and engaged in research and development. In 1991 he returned to Israel and the Technion, this time as a faculty member at the Department of Physics.

In 2006, Prof. Gershoni proved the possibility of producing entangled photons (particles of light) from semiconductor sources. Entanglement is a phenomenon whereby two quantum particles behave like physical twins that maintain a quantum correlation: when a characteristic of one of the particles changes, the characteristic of its twin simultaneously changes as well, making it impossible to describe the state of one of the particles separately from the state of the other.

In a joint research study with Prof. Joseph Avron from the Department of Physics at the Technion and doctoral students Nika Akopian and Netanel Lindner, Prof. Gershoni demonstrated – both theoretically and experimentally – that under appropriate conditions, an efficient prototype semiconductor-based light source of nanoscale dimensions produces entangled light. The researchers showed that it is possible to build a device based on such a source, which would be capable of producing entangled photons ‘on demand’ – a significant milestone for quantum communications, quantum information processing,computing, and perhaps even teleportation.

“Spooky action at a distance”

Quantum entanglement is a physical phenomenon that first appeared in a 1935 paper authored by Albert Einstein, Boris Podolsky and Nathan Rosen (one of the founding fathers of the Physics Department at the Technion) and became known as the EPR paradox (EPR stood for their initials). The paper expressed reservations about Einstein’s accepted formulation of quantum mechanics, which allegedly ‘allows’ for information to travel at light speed. Einstein believed that the ‘possibility’ for such behavior is fictitious, or as he put it: ‘spooky action at a distance.’

Niels Bohr, among the fathers of quantum mechanics, claimed in response to the paper on the EPR paradox that this ‘remote operation’ is actually possible, since it is based not on ‘mechanical impact’, but on the ‘logical effect,’ on the conditions that define the behavior of the system. Einstein then retaliated by describing Bohr’s response as “longwinded Talmudic gibberish.”

In 1962, Irish physicist John Bell, demonstrated that the Einstein-Bohr debate could be resolved experimentally. In research trials conducted in the 70s and 80s, as a result of a mathematical model formulated by Bell, it was scientifically proven that entangled particles are indeed endowed with an exceptional correlation that predicts quantum mechanics. The research by Professors Gershoni and Avron, which is based in part on the theoretical work of a former faculty member, the late Distinguished Professor Asher Peres, led to a breakthrough in this direction.

’In effect, we demonstrated how to develop a device that “shoots” entangled photonic pairs on demand,’ explains Prof. Gershoni. “This discovery is an important milestone bridging current technology (classical) and future technologies (quantum). The current technology, which includes computers, communications, lighting, data storage and processing of information, is based on semiconductors, and this is why our discovery is extremely relevant to the high-tech world. We are developing nano-scale semiconductor structures operating as ‘artificial atoms’ whose behavior may be explained and predicted using quantum mechanics. We believe that this breakthrough will advance the field of quantum information processing, which will form the basis of future technologies. Our research motivation stems also from our hope that technology will follow science and that in the near future we will be able to see a wide use of real quantum technology.”

The Landau Prize for Sciences and Research awarded by Mifal Hapais is bestowed on scientists who have made significant achievements and valuable contributions to the advancement of science and research. The Prize Committee selected Prof. Gershoni as this year’s winner of the Physics award; prize committee members include Professors Dan Shahar, Shmuel Fishman and Ora Entin-Wohlman . Landau prize winners in other categories are: Prof. Dana Wolf (Virology), Prof. Elisha Qimron (Hebrew language research), Prof. Amir Sagi (Agriculture), Prof. Howard Litvin (Gerontology), and Prof. Daniel Hanoch Wagner (Chemical and Materials engineering).

The research is being carried out in collaboration with the Russell Berrie Nanotechnology Institute.

In the photo: Prof. David Gershoni
Photo Credit: The Technion’s Spokesperson’s Office

For additional information: Gil Liner, Technion Spokesperson, 058-688-2208.

russ1

Technion celebrates the inception of classes for its second cohort of the Russian Freshman Year Program.* Graduates of the first cohort successfully integrated into regular Technion study programs at different faculties this year.

The start of the new academic year at the Technion has began with twenty-seven freshman year students from FSU countries enrolled in its Russian study program – they represent the second cohort of this unique program. At the opening ceremony, held on November 5, 2014, two of last year’s graduates, Polina Soloveichik and Andrey Elashkin, spoke about their experiences. “You gave us an opportunity to integrate into the Technion and Israel,” they said. “It’s hard to study at the Technion because here, being successful calls for more than talent alone. You find yourself studying long and hard even after a long day of classes, which leaves you with not much time for anything else. Yet the tremendous support and help by the program staff brought us to where we are today. It is because of all of you that we are now standing here as proud Technion students.”

russ2The program is managed through Technion International in cooperation with the “MASA” and “Nativ” organizations, in conjunction with the Ministry of Education, which is responsible for the Hebrew portion of the program. Prof. Anat Rafaeli, the Head of Technion International, welcomed the incoming students and told them that, “It is our goal to attract young people like you to the Technion and to Israel, and to assist you throughout this challenging integration. I can assure you that here you will receive the best science and engineering training, and request your help in undertaking your studies in these fields, as well as Hebrew language studies, very seriously.”

Prof. Rafaeli also thanked Naomi Ben-Ami, the Head of the Nativ organization, for her initiative and assistance that helped get the project off the ground last year. Ben-Ami thanked the staff of Technion International and expressed her hope that this program will strengthen the ties between Israel and ex-Soviet Jewry. “I wish each and every one of you much success, for those of you who choose to remain in Israel and for those who decide to return home. All of you will be our ambassadors.”

russ3“I am touched to see so many of our graduates from the first cohort here today, who are now integrated into regular Technion study tracks, and especially to hear them speaking Hebrew,” said Ariel Geva, the Director of Technion International. “To our new incoming students – you have all demonstrated great courage on coming here – you are embarking on a long, rigorous and fascinating journey, and we want you to know that we are here to assist you with anything you will need along the way.”

The first cohort opened with 22 young talented college-bound high school students from Eastern European countries,. This year, the graduates of the program have successfully integrated into various undergraduate study tracks at the Technion.

The second cohort has just opened with 27 students. As part of the program, students will take a short and concentrated preparation program (four months) consisting of mathematics, physics and Hebrew studies. In their second and third semester they will take five basic courses in engineering and sciences. In the Fall of 2015 – at the end of their first year of studies, which is given in Russian and includes 400 hours of Hebrew study – they will begin to learn with regular Technion students in Hebrew, at a faculty of their choosing.

unnamed (4)The Coordinator of the Russian Program, Luba Baladzhaeva, explains that in Russia and Ukraine, teens graduate from high-school at a relatively young age, and begin to look for academic study tracks. “Here at the Technion we offer high quality education and the students can start their studies immediately after their arrival to Israel.” Luba, who formerly worked for the Jewish Agency in Russia, made an Aliyah in 2009, and began working at the Technion two years ago.

Program graduates Constantin and Grigory Senchikhin, are 18 year old twins who grew up in Moscow. They had heard about the Russian program while they were still in high school, and underwent the admissions process which involved a Skype interview and a tour of the Technion campus. “We came here in 2013, met with students and the program heads, and we decided it was a good fit for us.” The brothers received full support from their parents, who also have formal technical education and who work in the fields of tourism and insurance back home.

unnamed (1)Grigory, a trumpet player, dreams of studying materials engineering and Constantin, who plays the saxophone and clarinet, wants to study biomedical engineering: “In Russia, I participated at a biomedical contest for high school students called “Step Into the Future” and this field interests me very much. There are wide gaps in the level of academics at high schools in Russia, therefore, elite universities typically take in students from prestigious high schools. Although we had the privilege of studying at an excellent high school, we chose to continue our university education at the Technion, because of its impressive past and excellent faculty.”

Picture Credit: Technion’s Spokesperson’s Office

For more information: Gil Lainer, Technion Spokesperson, 058-688-2208

2,185 new students began their studies at Technion this week. They will be enjoying a unique learning experience as well as an upgraded and extended network of Technion City dorms.

נשיא הטכניון פרופסור פרץ לביא ולצדו (יושבים) דיקן לימודי הסמכה-פרופסור יכין כהן, דיקן הסטודנטים-פרופסור מוריס אייזן ויו"ר אגודת הסטודנטים-דני מגנר

נשיא הטכניון פרופסור פרץ לביא ולצדו (יושבים) דיקן לימודי הסמכה-פרופסור יכין כהן, דיקן הסטודנטים-פרופסור מוריס אייזן ויו”ר אגודת הסטודנטים-דני מגנר

“Continued cuts in higher education poses a real threat to Israel’s future strength,” said Technion President Prof. Peretz Lavie to Technion’s new students. “A reversal of the trend and an increase in budgets would help Israel to become stronger and more secure, both economically and socially, for generations to come. It is very easy to cut and hurt, yet much harder and more expensive to rebuild.”

This year offers several new and unique courses of study at Technion, addressing the growing need for innovative experts in the fields of science, engineering and architecture.  The new curriculum at the Faculty of Architecture, which was adapted to the needs of tomorrow, includes two separate titles – “BA in Architecture” (B.Sc) and the title of “Master of Architecture” (M.Arch) with a practical orientation and specialization. The Program in Robotics and Autonomous Systems (Masters and PhD) is focussing on the next generation of technological systems: systems that manipulate themselves independently – without a human operator – in medicine, space and more. The Faculty of Medicine Sciences opened a new, graduate degree in medical science, designed for students with an  in depth knowledge in life sciences and medicine.

First classes at the Technion began exactly 90 years ago, in 1924, with 17 students. Today, there are more than 13,000 students, and the number of Technion graduates passed the bar this summer of 100,000.

In view of the constant increase in the number of students, construction is underway of dormitories for 500 additional students. The new dormitory building was made possible with a donation from the Chinese philanthropist Li Ka-shing.

Technion’s Mad Dash

Technion’s Formula Student Team Competing in the 2014 Formula SAE Championship in Italy Awarded Special Prize

Technion Formula Team 2014

Technion Formula Team 2014

The Technion delegation to the International Formula Student Race returned to Israel last week after winning a special prize, awarded to them by the chief designer of the Fiat Group (Alpha Romeo, Maserati and Ferrari), for the best design and for showing the greatest improvement since the previous competition. In the overall rankings, the team came in 28th place out of 44.

The leaders of the team, which consists of some 40 students from different Technion faculties, are Doris Pitilon and Ahmad Omri.

Doris, who was born in the US and grew up in Holon, completed her undergraduate degree in mechanical engineering this summer within the Academic Reserves/Atuda framework (a program which enables youngsters who are intended to join the army as soldiers, to study academic studies prior to their military service); she will shortly be called up to the IDF’s Ordnance Corps.

Ahmad, who grew up in Germany and in Sandala Village near Afula, completed his undergraduate degree at the Technion through the NAM (an acronym in Hebrew for Outstanding Arab Youth) Program and is currently pursuing his master’s degree in mechanical engineering. Members on the student formula team emphasized the tremendous contribution of Prof. Reuven Katz’s, Head of the Center for Manufacturing Systems and Robotics at the Faculty of Mechnical Engineering, who helped them with the fundraising efforts of the project, supplied them with a lab to work in, and incorporated this program into the annual course under his guidance: “New Product Design.”

Technion formula in action

Technion formula in action

The Group’s activity was funded in part by the Grand Technion Energy Studies Program (GTEP).

“The minute I heard about this project I wanted to be a part of it,” said Michael Kootzenko, a student from the Faculty of Aerospace, who was in charge of the car’s exterior surface; Kootzenko also drove the car in the competition. “Constructing the car for me was the fulfillment of a childhood dream. We built a car that was much stronger than what was required, and I’m extremely proud of the outcome.”

“I was attracted to this project because I wanted to do something practical during my studies,” adds Doris Pitilon, “And constructing the car is mechanical engineering at its best. It has been the main thing on my mind over these past two years, and what I gained in terms of management and engineering I would never have learned anywhere else. The competition itself was an amazing experience. Teams came from all over the world to compete. We all camped out together near the racetrack, and the atmosphere was truly great.”

The competition included a review of engineering aspects (“the immobile part of the competition”), followed by the various examinations evaluating acceleration, speed and performance. “We learned from our mistakes last year and came to this year’s competition well prepared with a stronger and faster car. We excelled in the acceleration heat (75m in 4.3 seconds), and also in the endurance heat.”

The Technion race car had four drivers from the team: Doris, Michael, Gilad Agam and David Amarilio. Over the past year, the drivers trained at “Dan Karting” in Haifa, where they were provided with access to a simulator and training free of charge. Other donors included Kanfit Ltd., which supplied the carbon composite materials for the car’s body, and “Plasko” that transported the car to and from Italy. Presently, the team is working on formulating the 2015 student formula team, which will represent the Technion in next year’s competition.

See how the team prepares for the championship race:


 

The SAE International has been organizing international events and competitions for engineering students for over thirty years. Its most prestigious competition is the Formula Student SAE Championship, in which students are required to design and manufacture a race car.

Technion President Prof. Peretz Lavie

Technion President Prof. Peretz Lavie

This summer, Israel is again compelled to ­­­­defend itself against a barrage of missile attacks aimed at civilian populations. Once again, the Iron Dome defensive anti-missile system saves countless civilian lives. Iron Dome was developed by the excellent engineers at Rafael Advanced Defense Systems, most of whom are Technion graduates. In addition, a vast underground network of terror tunnels, many of them directly threatening Israeli children, women and men, was revealed and had to be neutralized. In this arena also, Technion scientists are helping lead the effort to harness scientific innovation to thwart this  threat.

We deeply mourn the soldiers and civilians who lost their lives in this conflict, and wish for the speedy and full recovery of all the wounded.

Hundreds of Technion students were called for active reserve duty to help defend our nation, and we are making every possible effort to smooth their return to studies. We were also profoundly encouraged by the numerous expressions of support we received throughout the operation from the worldwide Technion family whose friendship never wavers, culminating in a solidarity delegation from the American Technion Society under the leadership of Larry Jackier the chairman of the Technion International Board of Governors.

We were also particularly moved by the many guests from the world’s four corners who came to celebrate the festive graduation of the 2014 class of the Technion International School. At the ceremony, it was clear to me that something new – truly global and extremely gifted – has taken form. Technion will continue to serve as an institution with a passion to work on behalf of all peoples.

Chairman of the first Technion Society Albert Einstein once said that: “We cannot solve our problems with the same thinking we used when we created them.” At Technion, we are proud of what has been called our ability to ‘think out of the box.’ The challenges and opportunities of tomorrow will depend on this Technion capacity for new thinking about old problems. In the issue of Technion Live, you will find a sample of this ingenuity in action. When we trust in this, a better future for all humanity is not a dream but a real possibility.

Peretz_Lavie_sign

Peretz Lavie

Arriving at the Technion Faculty of Biology from Harvard Medical School, Prof. Roy Kishony is establishing his headquarters at the Lokey Center of Life Science & Engineering in order to unveil the life-threatening mysteries of resistance to antibiotics.

Combining novel quantitative experimental techniques and clinical studies with mathematical modelling and advanced data analysis, the new Kishony lab is studying microbial evolution with a specific focus on antibiotic resistance.

The team aims at understanding how bacterial pathogens evolve resistance to antibiotics within the human body during infection and how combinations of drugs can be used to slow down and perhaps even reverse this process.

Technion and German Researchers Successfully Develop the World’s Smallest Propeller that may be able to Move within the Human Body

In the future, it will enable the development of a drug delivery system capable of penetrating the cell with the aid of a relatively low magnetic field

German and Technion scientists managed to successfully develop the world’s smallest propeller driven by an external rotating magnetic field. This is what has been reported by the scientific journal “ACS Nano.” The scientists hope that this technology will allow development of a drug delivery system directed at cells with penetration capability with the aid of a relatively low magnetic field in the future.

“Tissue and biological fluids are complex viscoelastic media, with a nanoporous macromolecular structure. We show that nano-sized screw propellers can be accurately navigated in biomimetic gel (i.e.  a synthetic imitation of biological gel),” explains Associate Professor Alex Leshansky from the Faculty of Chemical Engineering. Professor Leshansky co-authored the article with Dr. Morozov and the group of Professor Peer Fisher from the Max Planck Institute for Intelligent Systems in Germany. “The diameter of these nano-screws (that is, propellers similar to bacterial flagellum that are driven by rotation, like a corkscrew) is about 70 nanometers and they are smaller than previously reported nano-propellers as well as any motile microorganism. We have demonstrated that although the nano-propellers are too tiny to be controllably steered in liquids such as water due to random Brownian motion, they are able to move in viscous fluids (such as glycerin) with velocities similar to micro-propellers (that is, propellers the size of micro-meters).  However, nano-propellers that are driven through a gel have a significant advantage: their dimensions are of the same size range as the gel’s mesh size. As a result, within the gel, the nano-propellers actually display significantly enhanced propulsion velocities, exceeding the highest speeds measured in glycerin as compared with micro-propellers, which show very low or negligible propulsion. The nano-screws have a significant potential for applications in extracellular environments, and furthermore, they are sufficiently small to be taken up by cells”

In the illustration:

Picture 1: SEM image (taken by a scanning electron microscope) of a nano-propeller (on the left); a schematic drawing of a nano-propeller moving in gel and its track (on the right). The polymeric mesh structures hinders the larger helices from translating effectively, whereas smaller propellers with a diameter close to the mesh size can pass through the network without being affected by the macroscopic viscoelasticity caused by the entangled polymer chains.